
GABAergic long- range projections were first described 
in 1966 (ref.1). The earliest studies of such projections 
pertained to GABAergic neurons with prominent pro-
jections in, for example, the basal ganglia and cerebellar 
output nuclei1–3. Many other GABAergic projections 
became accessible only recently with the development 
of tools, such as viral- based anterograde and retro-
grade labelling, that enable the detection of sparse 
projections. Indeed, many neocortical and archicor-
tical GABAergic projections are relatively sparse and 
their investigation therefore requires highly sensitive 
and specific tools. Thus, the first cortical GABAergic 
projection was revealed as late as 13 years after the dis-
covery of basal ganglia GABAergic outputs4. Studying 
cortical GABAergic projections remains a challenge,  
as reflected in the scarce literature on this topic: over  
the past 10 years, only about 5 papers per year have been 
published in this area.

There has been noticeable progress in this area over 
the past 8 years. The continuous addition of newly 
detected projections to the list of long- range GABAergic 
neurons can be attributed mainly to the increasing use 
of adeno- associated virus (AAV) as a vector to target 
GABAergic neurons for optogenetic manipulations. This 
tool has allowed researchers not only to reveal novel 
projections but also to characterize their postsynaptic 

effects in vitro and in vivo. In this Review, we focus on 
advances that have been made since the first use of AAVs 
to visualize and functionally study cortical GABAergic 
long- range projections in 2012 (ref.5) and highlight some 
pressing questions for future research. A review on cor-
tical GABAergic projections discovered before 2012 is 
available elsewhere6.

Based on anatomical and in vitro electrophysiologi-
cal studies, certain connectivity patterns for GABAergic 
long- range projections have emerged and, based on 
these data, speculations as to the in vivo function of these  
projections have been made. Below, we discuss the 
in vivo studies that addressed the question of whether 
the frequently postulated function of synchroniza-
tion and disinhibition at long distance holds true and, 
if so, under which behavioural conditions GABAergic 
long- range projection neurons get recruited.

Definition of GABAergic projections
In this article, we use the term ‘GABAergic projection’ 
to refer to long- range axons that span regions of dif-
ferent sensory modalities and/or executive and cogni-
tive functions. Thus, we do not consider projections 
between subregions of a brain area (for instance, sub-
fields of the hippocampus) or between primary and 
secondary cortical areas of the same modality. We do 
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include projections to the contralateral hemisphere that  
connect cortical areas of the same modality as well 
as projections connecting areas of different modali-
ties within one hemisphere (for example, motor and 
somatosensory areas).

We use the term GABAergic projection neurons if the 
neurons under study met one of the following criteria: 
expression of GABA- synthetizing proteins; expression of 
vesicular GABA transporter (VGAT); presence of GABA 
in synaptic vesicles; expression of neurochemical mark-
ers known to be present in cortical GABAergic neuron 
subtypes such as parvalbumin (PV; a caveat is that PV is 
expressed in a few glutamatergic cells in the retrosplenial 
and the somatosensory cortices7), somatostatin (SOM; 
a caveat is that at least one SOM Cre- driver line that is 
often used to identify and target SOM neurons is asso-
ciated with erroneous Cre expression in some PV+ and 
PV− SOM− neurons8–10) and vasoactive intestinal pep-
tide (VIP); and induction of GABA receptor- dependent 
postsynaptic currents in targeted neurons.

Most GABAergic projections presumably form 
classic GABAergic synapses (fig. 1) but some probably 
deviate from this pattern. For instance, dopaminergic 
ventral tegmental area–substantia nigra neurons project-
ing to the striatum do not express any type of glutamate 

decarboxylase (GAD) and thus do not synthetize GABA, 
but they take up GABA from the extracellular space 
through membrane- bound GABA transporters11,12. 
Another ‘atypical GABAergic projection’ is the one 
from the tuberomammillary nucleus to the cortex. 
Here, GABA is synthesized and released and acts via 
extrasynaptic GABAA receptors, resulting in slow tonic 
inhibition13. This type of GABAergic connection has also 
been found in neurons of the developing hippocampus, 
in which its activation induces tonic currents that, in 
turn, cause depolarization owing to a high intracellular 
chloride concentration in the postsynaptic cell14.

Heterogeneity of GABAergic projections
The ever- increasing use of AAV- based tracing methods 
has led to the identification of an unexpectedly high 
number of GABAergic projections that were unknown 
before 2012 (Table 1, fig. 2) and it is safe to assume 
that more projections will be discovered in the com-
ing years. In parallel, previously identified pathways 
have been studied in more detail and an unexpected 
diversity in these projections has been found. Based on 
anatomical investigations, it initially appeared that all 
GABAergic projections from the medial septum (MS) 
to the hippocampus were PV+ (ref.15). However, subse-
quent electrophysiological studies identified fast- firing 
and burst- firing GABAergic projection cells in the MS, 
pointing towards the presence of at least two physiolog-
ically distinct subtypes. In fact, we now know that, in 
rodents, MS GABAergic projections to the hippocam-
pus and the medial entorhinal cortex (MEC) originate 
from several cell types, namely calbindin (CB)+, PV+ and 
choline acetyltransferase (ChAT)+ neurons16–20. There is 
still no consensus regarding the co- expression of some 
of these markers (for example, CB and ChAT16,20). 
Importantly, CB+, PV+ and ChAT+ projections from the 
MS to the entorhinal cortex innervate layer 1/2 (L1/2) 
cells in the MEC with different cell- type specificity17,18. 
However, other studies demonstrated that PV+ septal 
projection neurons that express DNA- binding protein 
SATB1 differ according to metabotropic glutamate 
receptor 1A (mGluR1A) expression, activity patterns 
and axonal targeting21,22. Thus, neurons with no detect-
able mGluR1A expression innervate PV+ axo- axonic and 
cholecystokinin- expressing cells in the hippocampal 
CA3 region selectively22, whereas mGluR1A- expressing 
neurons innervate GABAergic neurons mainly in the 
MEC and presubiculum21. The latter findings have been 
facilitated by the use of single- unit recordings and the 
juxtacellular labelling of single neurons, a technique 
that provides unparalleled detailed information about 
the functional, chemical and morphological diversity of 
projection neurons. Studies of this kind — that is, stud-
ies that provide information at multiple levels of analy-
sis — will be of extreme importance in furthering our 
understanding of projection neurons.

In addition to the neurons described above, there is 
a plethora of cortical GABAergic projection neurons, 
many of which were discovered using AAV- based trac-
ing. Previous retrograde tracing studies had indicated 
the presence of cortico- cortical projections originating 
mainly from neurons expressing SOM and neuronal 
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Fig. 1 | GABAergic projection neurons form classical and atypical synapses.  
a | Schematic drawing that depicts a classic GABAergic synapse. The presynaptic long-  
range axon terminal harbours the molecular machinery for GABA synthesis (glutamate 
decarboxylase (GAD)) and vesicular GABA transport (vesicular GABA transporter (VGAT)) 
and the postsynaptic site is equipped with synaptic GABAA receptors (GABAARs) that 
mediate fast inhibitory postsynaptic currents (IPSCs) in response to GABA release.  
b | Alternatively, the presynaptic terminal contains GABA- containing, VGAT+ vesicles as  
a result of GABA uptake mediated by the GABA transporter (GAT) in the absence of cell 
internal GABA synthesis. c | Activation of the long- range axonal terminal induces slow 
inhibitory postsynaptic currents that are mediated by extra- synaptic GABAARs at the 
postsynaptic site. For most GABAergic projections, only one or a few of the features 
depicted in parts a–c have been investigated to determine their GABAergic nature.
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nitric oxide synthase (nNOS)23 and of corticofugal PV+ 
neurons projecting to the striatum7. Using AAV- based 
tracing, three recent publications revealed cortical 
SOM+ neurons (mainly in deep layers) that project to 
several subcortical brain areas24–26. Moreover, PV+ and 
VIP+ GABAergic corticofugal projections have been 

discovered24,26,27. Several studies24,28–30 provide increasing 
evidence that several, if not all, cortical areas harbour 
GABAergic neurons that project at a long distance to 
other cortical and subcortical regions (Table 1).

Recent functional studies that differentiate between 
GABAergic projection neurons based on SOM, PV 

Table 1 | Newly discovered projections to and from the neocortex and archicortex

Source area Target area Tracing technique Refs

Hippocampal projections

CA1 stratum oriens 
(VIP+)

Subiculum Retrobeads, patch clamping 
with biocytin labelling

87

CA1 stratum oriens 
(nNOS+)

Tenia tecta, diagonal band, medial septum, 
subiculum, entorhinal cortex, mammillary nuclei, 
lateral hypothalamus, olfactory tubercle, olfactory 
bulb, ipsilateral dentate gyrus and contralateral 
hippocampus

Cre and Flp- dependent AAV 
expression, fluorogold

101

Cortical projections

Neocortex 
(orbitofrontal and 
motor cortices)

Mediodorsal thalamic nucleus (ipsilateral and 
contralateral), reticular thalamic nucleus, amygdala, 
dorsal raphe, cerebral cortex (ipsilateral and 
contralateral), CPu (ipsilateral and contralateral), 
LGP, MGP, nucleus accumbens, olfactory tubercle, 
substantia innominata, ventral pallidum (ipsilateral 
and contralateral) and substantia nigra

AAV, Fast Blue 24

MEC MS CTB 17

Motor and auditory 
cortices

Striatum AAV 25

Subiculum CA1 Pseudotyped rabies tracing 138

Endopiriform nuclei, 
piriform cortex, 
entorhinal cortex and 
perirhinal cortex

Amygdala Fluorogold (iontophoretic) 29

Motor cortex Striatum, insular cortex, frontal association area, 
somatosensory cortex, dorso- lateral orbital cortex, 
prelimbic cortex, anterior cingulate cortex, perirhinal 
cortex, auditory cortex, temporal association area, 
contralateral motor cortex, parietal cortex, orbital 
cortex, dorsal peduncular cortex, infralimbic cortex, 
piriform cortex and visual cortex

CTB, AAV, pseudotyped rabies 
tracing

26

Infralimbic cortex Prelimbic cortex Electrophysiology 30

Ventral olfactory 
nucleus

Lateral hypothalamus CTB, pseudotyped rabies 
tracing

141

Auditory cortex Lateral amygdala AAV, CTB, Retrobeads 104

Medial septal projections

MS (PV+) Parasubiculum, presubiculum and subiculum, LEC, 
MEC, retrosplenial cortex and perirhinal cortex

Retrobeads, PHAL, AAV 16,17

MS (CB+) MEC and hippocampus AAV, PHAL, Retrobeads 16,17

MS Double projection to the MEC and presubiculum Juxtacellular labelling, AAV, 
retrograde rabies virus tracing

21

Subcortical projections to cortex

GPe Cortex Fluorogold, AAV, biotinylated 
dextran amine, Retrobeads

103,142

Amygdala Parasubiculum Fluorogold (iontophoretic) 143

Amygdala (CeMA) Ventromedial prefrontal cortex AAV 144

Raphe nucleus Medial prefrontal cortex Fluorogold in GAD67–EGFP 
mice

145

AAV, adeno- associated virus; CB, calbindin; CeMA, centromedial nucleus of the amygdala; CPu, caudate putamen; CTB, cholera toxin 
subunit B; EGFP, enhanced green fluorescent protein; GPe, external globus pallidus; LEC, lateral entorhinal cortex; LGP, lateral globus 
pallidus; MEC, medial entorhinal cortex; MGP, medial globus pallidus; MS, medial septum; nNOS, neuronal nitric oxide synthase; 
PHAL, phaseolus vulgaris leucoagglutinin; PV, parvalbumin; VIP, vasoactive intestinal peptide.
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and/or SAT1B, and mGluR1A expression21,22,26 suggest 
that a detailed classification of projection neurons is 
relevant to dissect their diverse complex postsynaptic 
effects and functions in fine- tuning behaviour. A clas-
sification beyond marker expression including other 
criteria, such as the identity of postsynaptic targets 
and state- dependent neuronal activity, as performed 
by Unal et al.31 and Joshi et al.22 for septo–hippocampal 
projections, is also a desirable goal in future studies of 
other GABAergic projection neurons. Thus, it is likely 
that SOM+ cortical projection neurons are differentially 
recruited during the various cognitive or behavioural 
events: we know, for example, that in the somatosensory 
cortex, whisker stimulation results in decreased SOM+ 
neuron activity in L2/3 and L5a but increased activity in 
L4 and L5b to L6 (ref.32). Whether such functional dif-
ferences apply also to SOM+ projection neurons in these 
cortical layers remains to be established.

Functions of GABAergic projections
Many ascending GABAergic projections from the brain-
stem, thalamus and basal forebrain have been impli-
cated in wakefulness or arousal (for a review, see ref.33). 
In addition, several recent studies have revealed that 
certain GABAergic projections connecting subcortical 
brain areas support functions related to sleep states34 and 
feeding behaviour35. However, subcortical projections, 
including GABAergic projection neurons in the basal 
ganglia, are beyond the scope of this Review.

For cortical GABAergic projection neurons, one 
major function that has been repeatedly proposed per-
tains to the synchronization of distant brain areas6,23,36–38.  
A num ber of considerations support this conjecture. First,  
GABAergic projection neurons often target GABAergic 
neurons, which in turn regulate local network oscilla-
tions (see the review by Caputi et al.6 and Supplementary 
Table 1 for newly discovered targets). Second, 
GABAergic projections often exhibit extensive arborisa-
tion in the target area and there is evidence for individual 

GABAergic projection neurons that target more than 
one downstream area. These features probably facilitate 
the synchronization of several target cells or areas21,39–41. 
For example, individual PV+ and/or CB+ GABAergic 
neurons in the MS project to both the entorhinal cortex 
and hippocampus17, the hippocampus and subiculum31, 
or the entorhinal cortex and presubiculum21. Third, 
MS and hippocampal long- range axons are heavily 
myelinated, which might subserve fast action poten-
tial propagation velocity and temporal accuracy15,41–43. 
Single- cell sequencing revealed the specific expression 
of the myelin marker pleiotrophin in nNOS+ putative 
cortical GABAergic projection neurons44. Fourth, several 
hippocampal and septal GABAergic projection neurons 
are coupled to network oscillations21,22,31,41,43,45,46 (fig. 3). 
Fifth, GABAergic projection neurons facilitate oscilla-
tions at resonance frequency as revealed by optogenetic 
activation and inhibition experiments5,19,47–49.

It is thought that temporally coordinated activity in 
brain areas at long distance is necessary for the precise 
timing of incoming and outgoing signals to facilitate 
cognitive processes50,51. Indeed, synchronized neuronal 
activity has been detected between many cortical and 
subcortical brain areas and its functional significance 
has been discussed in the context of several disorders, 
such as schizophrenia, autism52 and depression53, and 
in processes such as decision- making54 and memory 
formation55. However, studies addressing the cognitive 
and behavioural effects following the manipulation of 
long- range GABAergic activity have remained scarce. 
Moreover, it is not clear whether any of the reported 
cognitive and behavioural effects are linked to altered 
synchronization between distant brain areas via oscilla-
tory coupling. Below, we take a closer look at projections 
from and to the cortex whose function and oscillatory 
activity have been investigated in more depth.

Septal projections
To date, the septo–hippocampal pathway is the best- 
 studied of all corticopetal and corticofugal GABAergic 
projections in terms of diversity and functionality. 
This pathway comprises PV+ and CB+ GABAergic pro-
jections56 as well as cholinergic–GABAergic projections 
(some of which also express CB16,19,57) that target distinct 
populations of neurons in CA1, CA3 and the dentate 
gyrus (DG) (fig. 4).

The MS is crucial for the generation of theta oscillations 
in the hippocampus and has a role in spatial learning and 
memory58–64. Lesions of the MS lead to decreased theta 
rhythmicity in the hippocampus and to impaired spatial 
working memory65. Of note, inactivation of GABAergic 
septal neurons alone is sufficient to impair spatial learn-
ing66,67. Finally, pharmacological inactivation of MS neu-
rons disrupts theta oscillations and the firing of spatially 
tuned neurons (grid cells) in the MEC68–70.

Do septo–hippocampal projections modulate network 
oscillations? It has long been hypothesized that cholin-
ergic fibres drive theta oscillations whereas GABAergic 
fibres support their precise timing36,38. Such a simplified 
dichotomy is difficult to maintain in view of the increas-
ing evidence that a marked number of ChAT+ terminals 

Theta oscillations
Oscillations of extracellularly 
recorded currents in the 
hippocampus at frequencies 
between 5 and 12 Hz; this 
rhythmic activity is most 
prominent during exploratory 
behaviour.

Grid cells
Neurons in the medial 
entorhinal cortex that are 
spatially tuned and whose 
hexagonal firing pattern 
accounts for the naming of this 
cell type; they support spatial 
memory and navigation.

Fig. 2 | Cortical GABAergic projections. Cortical GABAergic projections form a widely 
distributed neuronal network spanning many cortical and subcortical brain areas. The 
schematics depict published GABAergic projections from and to the hippocampus 
(part a), from the cortex (part b) and to the cortex (part c). The discovery of cortical 
GABAergic projections has been strongly facilitated by the use of viral- tracing techniques. 
The first study in which these techniques were used in this context was published in 2012 
and projections described in papers published from 2012 onwards are highlighted in pink. 
Projections that express different markers and that are from or to different sub- nuclei  
are not separately shown. Branching points in our schematic do not necessarily indicate 
the existence of double- projecting neurons but only serve the purpose of simplifying the 
image. Amy, amygdala; Au, auditory cortex; BF, basal forebrain (comprising the MS,  
ventral pallidum, diagonal band nuclei, substantia innominata–extended amygdala and 
peripallidal regions); Cg, cingulate cortex; CPu, caudate putamen; DBB, diagonal band  
of Broca; DP, dorsal peduncular cortex; EC, entorhinal cortex; En, endopiriform nucleus;  
F, frontal cortex; GP, globus pallidus; GPe, external globus pallidus; GPi, internal globus 
pallidus; HIPP, hippocampus; Hypo, hypothalamus; I, insula; IG, indusium griseum; 
IL, infralimbic cortex; LC, locus coeruleus; M, motor cortex; MD, mediodorsal thalamus;  
MS, medial septum; NAc, nucleus accumbens; NI, nucleus incertus; O, orbitofrontal cortex;  
OB, olfactory bulb; OT, olfactory tubercle; PaS, parasubiculum; Per, perirhinal cortex;  
PFC, prefrontal cortex; Pir, piriform cortex; PrL, prelimbic cortex; PrS, presubiculum;  
PtA, parietal association area; R, raphe; RS, retrosplenial cortex; Rt, reticular nucleus; 
S, somatosensory cortex; SN, substantia nigra; Sub, subiculum; TeA, temporal association 
area; TMN, tuberomammillary nucleus; TT, tenia tecta; V, visual cortex; VON, ventral 
olfactory nucleus; VTA, ventral tegmental area; ZI, zona incerta.
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co- transmit GABA19 (see below). The first evidence that 
septal GABAergic projections affect hippocampal oscil-
lations was obtained in acute slice preparations in which 
septo–hippocampal connections remained intact71. In 
this study, electrical stimulation of septal fibres at theta 

frequency entrained the firing of CA1 pyramidal cells, 
which was thought to result from the rebound firing 
of rhythmically inhibited GABAergic interneurons. 
Subsequently, recordings with extracellular electrodes in 
the MS and hippocampus in rats during sleep revealed 
that most cells in the MS are coupled to hippocampal 
theta oscillations but are less active during hippocam-
pal sharp wave–ripples (SWRs)45, further substantiating 
the idea that septo–hippocampal projections specifically 
drive hippocampal theta oscillations. Borhegyi et al. 
provided the first evidence for differential activation 
of GABAergic PV+ projection neurons in 2004 (ref.43). 
The authors hypothesized that septal neurons firing at 
the peak and trough of hippocampal theta respectively 
target distal dendrite- targeting and somata- targeting 
interneurons in the hippocampus — an innervation pat-
tern that would support the precise pyramidal cell firing 
at the trough of theta oscillations. More than 13 years 
later, using single- cell recordings and juxtacellular label-
ling, Joshi et al. and Unal et al. were able to character-
ize innervation patterns and in vivo activity patterns of 
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Fig. 3 | Oscillatory coupling of rhythmically firing 
hippocampal and septal GABAergic projection 
neurons. Schematic depicts projections with known 
activity patterns during theta oscillations and sharp wave–
ripples (SWRs). a | A study found that projection neurons  
in stratum radiatum (n = 2 cells) exhibited preferred firing  
at the descending phase of CA1 theta oscillations41. Both  
cells projected to the cortex, with one of them projecting 
additionally to the subiculum. b | Projection neurons in 
stratum oriens fired preferentially at the early ascending 
phase of theta oscillations and increased their firing rate 
during SWRs. The target areas for the two cell types in  
the first two rows in part b are unknown but, considering  
a previous publication41, the subiculum can be thought of 
as a putative target area. The depicted characteristics  
of the first and second types are based on 4 and 2 cells, 
respectively, with a theta phase coupling of 226–305 
degrees (descending phase) and 0.6–2.7 degrees (early 
ascending phase), respectively46. Neurons of the third type 
depicted in the bottom row (n = 6 cells) projected to the 
subiculum. Of these 6 cells, 4 also projected to the medial 
septum (MS) and 3 also projected to the cortex41. c | Septal 
parvalbumin- expressing (PV+) neurons projecting to CA3 
fired preferentially during or around the trough of theta22. 
They included the so- called ‘Teevra cells’ (n = 8 cells with 
identified projections in CA3 and PV immunoreactivity) 
that fired shortly before the trough or during the ascending 
phase of theta (342–357 and 5.7–138.6 degrees, respectively). 
SWRs were detected only in a few cases (n = 4 Teevra cells) 
and, although not conclusive, it appears that the firing 
frequency during SWRs did not change in this cell type.  
Of the 8 cells, 3 had axonal branches in CA1 (ref.22) (see 
also Table 2, cell type 1). Unal et al. found a similar cell in 
anaesthetized rats (second row, n = 1; see also Table 2,  
cell type 2) without CA1 projections and with increased 
SWR- associated firing31. d | A septal PV+ neuron projecting 
to CA1 and subiculum preferentially fired during the late 
ascending phase of CA1 theta oscillations (n = 1, see also 
Table 2, cell type 3)31. e | A septal PV+ neuron projecting  
to the dentate gyrus (DG), CA1 and CA3 exhibited 
preferential firing during the descending phase of  
theta and a decreased firing rate during SWRs (n = 1,  
see also Table 2, cell type 4)31.
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several PV+ projection neurons with such properties22,31 
(Table 2). However, the latter study also pointed towards 
an unexpected diversity of PV+ septo–hippocampal neu-
rons. Thus, at least in rats, four PV+ septo–hippocampal 
neuron types were discernible when considering their 
temporal spike- coupling to ongoing CA1 theta oscilla-
tions and their cellular targeting in the hippocampus31 
(Table 2, fig. 3).

Interestingly, Unal et al. found that projection neurons 
also innervated local neurons, suggesting that these cells 
are ideally suited to synchronize local as well as distant 
networks31. It is noteworthy that, in one of the first pub-
lications on cortico- cortical GABAergic projection neu-
rons, published in 1989, Germroth et al. already pointed 
out that individual GABAergic projection neurons from 
the MEC to the hippocampus exerted simultaneous local 
(MEC) and remote (hippocampus) inhibition72. In the 
context of these considerations, the most interesting 
question is whether connectivity rules in the two target 
areas diverge. One furthermore wonders whether local 
and distant axon branches derived from the same source 

neuron differ functionally (for example, axon thickness, 
myelination, release probability).

It should be noted here that not all septo–hippocampal 
neurons fire with high rhythmicity. A recent study demon-
strated the existence of low- rhythmic- firing neurons  
with less reliable phase coupling to theta oscillations  
and frequent skipping of theta cycles73. Their molecular, 
morphological and target cell profile was distinct from 
the PV+ projection neurons described above, thus add-
ing to the diversity of septo–hippocampal projection  
neurons (Table 2).

Consistent with a scenario according to which 
GABAergic septo- hippocampal neurons are involved 
in the generation of hippocampal theta oscillations, a 
study found that, during locomotion, the overall activ-
ity of GABAergic septo–hippocampal axon terminals 
measured by GCaMP imaging in CA1 correlated with 
the power of theta oscillations (type I theta; the precise 
timing could not be revealed in this study owing to  
the low temporal resolution of GCaMP imaging)74. The 
identity of the GABAergic terminals was not further 
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CA1

CA3
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GAD+ ChAT+
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PV+ CB+

Target cells
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GABAergic hippocampal–septal cells

Mixed GABAergic cells (CB+, NPY+, CR+ and SOM+)

PV+, SOM+ and NPY+ bistratifed cells

Unidentified GABAergic

Pyramidal cell

Unidentified?

?

CA1

CA1

CA1

Fig. 4 | Target specificity of septo–hippocampal GABAergic neurons. Molecularly defined septo–hippocampal 
GABAergic neurons innervate distinct subtypes of hippocampal neurons. Schematic drawing of projections and  
target cells. GABAergic septo–hippocampal projections target a heterogeneous population of interneurons and 
pyramidal cells. Parvalbumin- expressing (PV+) GABAergic projection neurons exhibit specific targeting of subsets of 
hippocampal interneurons (mainly PV+). The target cells of choline acetyltransferase- expressing (ChAT+) and calbindin- 
 expressing (CB+) projection neurons remain to be fully determined. CCK, cholecystokinin; CR, calretinin; DG, dentate 
gyrus; GAD, glutamate decarboxylase; MS, medial septum; NPY, neuropeptide Y; SOM, somatostatin; VIP, vasoactive 
intestinal peptide.

Sharp wave–ripples
(SWrs). SWrs are 
extracellularly recorded,  
high frequency (150–250 Hz) 
synaptic currents that emerge 
through the highly synchronous 
firing of neurons in the 
hippocampus during 
immobility and slow  
wave sleep.

Phase coupling
Temporal alignment of the 
phases of two oscillators  
such that the first oscillator 
coincides with a fixed phase  
of the second oscillator.
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analysed in this study. Hence, it is not clear whether any 
of the above- mentioned GABAergic terminals in CA1 
(Table 2) were analysed. Interestingly, theta oscillations 
induced by salient events (putative type II theta, as 
described in ref.75) were not accompanied by increased 
axon terminal activity, suggesting that this population of 
CA1- projecting GABAergic neurons was implicated in 
type I theta specifically.

Although these findings strongly suggest that 
GABAergic septo–hippocampal neurons are impli-
cated in hippocampal oscillatory activity, they do not 
provide causal evidence. One recent study addressed 
this association. It showed that optogenetic stimulation 
and inhibition of PV+ septo–hippocampal projections 
in urethane- anaesthetized mice respectively enhanced 
(but did not initiate) and decreased type II theta yet 
both manipulations had no effect on type I theta in 
the hippocampus48. This finding is surprising con-
sidering the studies suggesting that the firing of PV+ 
septo–hippocampal projections is phase- coupled to 
type I hippocampal theta22,31. Considering the naturally 
occurring diversity of PV+ projection neuron firing  
with respect to theta phase22,31 and the existence of 
additional PV- GABAergic projection neurons with 
unknown theta coupling, it remains an open question 
as to how these cells contribute to hippocampal type I 
and type II theta oscillations.

Do septo–hippocampal neurons modulate cognition and 
behaviour? GCaMP imaging of septo–hippocampal 
terminals in CA1 revealed surprisingly general, non- 
specific activation upon locomotion and presentation of 
stimuli of several sensory modalities, including air puffs, 
auditory stimuli and light flashes (but not appetitive 
water rewards)74, raising the question of whether distinct 
projection neurons31 exhibit functional specialization (in 
this study, GCaMP was expressed in septal GABAergic 
cells, thus comprising several types of GABAergic pro-
jection neurons). Indeed, responses in boutons from a 
given axon were more similar to each other than to those 

in boutons from other axons, suggesting functional 
diversity among the projection neurons74. It will be a 
challenging task to correlate those functional features 
with the chemical, morphological and electrophysio-
logical properties described in other studies16,17,22,31. Of 
note, distinct boutons that were activated by stimuli 
of several modalities (for example, locomotion and air 
puffs) seemed to innervate the same postsynaptic CA1 
interneuron. Interestingly, the population activity cor-
related with the intensity or salience of the cue. Thus, 
bouton activity correlated with the intensity of air puffs. 
Notably, the most salient stimulus (that is, an air puff) 
evoked the largest response, with more than 70% of 
imaged boutons being activated74. GABAergic septo–
hippocampal projections could thus serve to encode 
the intensity or salience rather than the modality of the 
signal and detect the coincidence of multimodal inputs. 
The increased activation upon exposure to an intense 
or a salient cue could facilitate the routing of salient sig-
nals impinging onto hippocampal circuits from other 
neuronal sources.

The behavioural effects of the preferred saliency-  
dependent recruitment of septo–hippocampal neurons 
can be inferred by the findings from yet another study in 
which the authors demonstrated that optogenetic acti-
vation of PV+ septo–hippocampal neurons enhances 
exploration in the presence of novel objects but not in 
an open field without salient cues48.

Entorhino–hippocampal projections
GABAergic entorhino–hippocampal projection neurons 
are heterogeneous and include PV+ and PV- neurons5. 
GABAergic projection neurons have been found both 
in the MEC5 and lateral entorhinal cortex (LEC)76. It is 
widely held that excitatory spatially tuned cells in the 
MEC support spatial representations for episodic mem-
ory, whereas excitatory LEC neurons exhibit weaker 
spatial tuning77 and convey non- spatial, object- related 
information78. Thus, it is probable that GABAergic 
projections from the MEC and LEC also contribute 

Table 2 | Characteristics of PV+ septo–hippocampal neurons

Target cells in the hippocampus Coupling to CA1 
theta phasea

Firing rate 
during theta 
versus non- theta

Spike rates 
during CA1 
SWR events

Anaesthesiab Organism Number 
of cells 
detected

Refs

CA3 (2 out of 2 tested neurons 
innervated PV+ axo- axonic cells, 
and 1 out of 2 tested neurons 
innervated CCK+ cells); partly CA1 
(3 out of 8 cells)

Trough and 
ascending phase 
(during run and 
rest)c

Unchanged Constant Non- anaesthetized, 
head fixed

Mice 9 22

CA3 (few somata in stratum lucidum 
and radiatum)

Trough or early 
ascending phase

Increased Increased Urethane Rat 1 31

CA1 (PV+, SOM+, NPY+ bistratified 
cells); subiculum

Late ascending 
phase

Unknown Constant Urethane Rat 1 31

CA3 (PV+ axo- axonic cells); DG (PV+ 
cells and a single nNOS+ cell); CA1 
(PV+ axo- axonic cells)

Descending 
phase

Unchanged Suppressed Urethane Rat 1 31

CA3 PV+ basket cells; a single CA3 
nNOS+ cell; a single CA3 SOM+ cell

Unknown Unknown Unknown Urethane Rat 1 31

CCK, cholecystokinin; DG, dentate gyrus; nNOS, neuronal nitric oxide synthase; NPY, neuropeptide Y; PV, parvalbumin; SOM, somatostatin; SWR, sharp wave–
ripple. aTheta oscillations were recorded in CA1 stratum oriens or pyramidale. bUrethane anaesthesia results in type II theta. cTheta during running is defined as 
type I theta whereas theta during rest can be defined either as type I (during rapid eye movement sleep) or type II (mainly upon salient stimuli).
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differentially to distinct representations. Further evi-
dence for differential information processing in the 
MEC and LEC is that, in the MEC, neuronal activity 
exhibits pronounced theta and space modulation (that 
is, ‘phase precession’)79. Consistent with this finding, 
GABAergic inputs from the MS that are thought to have 
a theta pacemaker function80 are more abundant in the 
MEC than in the LEC16. These findings indicate that 
GABAergic projection neurons in the MEC are subject 
to stronger theta modulation than those in the LEC.

Consistently, we showed that optogenetic stimu-
lation of PV+ GABAergic MEC axon terminals in the 
CA1 enhances CA1 theta oscillations in vitro5. A recent 
study provided indirect evidence that PV+ projections 
from the MEC might also be implicated in hippocam-
pal theta oscillations in vivo81. In this study, 83% of 
hippocampus- projecting, fast- spiking neurons (putative 
PV+ neurons) in the MEC were speed modulated, that 
is, their firing rates correlated with the running speed 
of mice. Since theta oscillation frequency and power 
correlate with locomotion speed82–84, this study strongly 
supports the notion that the activity of PV+ projection 
neurons in the MEC increases with the occurrence of 
hippocampal theta in vivo. It remains to be established 
whether these projections causally contribute to the 
occurrence of theta oscillations and whether precise 
theta phase coupling of PV+ projection neuron firing  
is required.

GABAergic axon terminals in the CA1 that derive 
from LEC neurons76 showed many similarities to those 
of the septo–hippocampal pathway74. First, GCaMP 
imaging of axon terminals revealed responses to stimuli 
of several modalities (visual and auditory sensory inputs 
as well as air puffs, water rewards, spontaneous running 
and licking). Second, the most salient stimulus (aversive 
air puffs) elicited the strongest response (22.9% of bou-
tons were recruited). Third, responses to distinct stimuli 
were more similar across boutons from one axon than 
across neighbouring boutons from different axons, sug-
gesting functional diversity within this pathway. In fact, 
individual boutons responded to stimuli of two modal-
ities at most76. All this information prompts the still 
open question of whether boutons with different activity  
patterns exhibit molecular and morphological diversity.

The documented function of this GABAergic projec-
tion is the disinhibition of CA1 pyramidal cells via the 
inhibition of hippocampal cholecystokinin- expressing 
interneurons. Thus, the activation of LEC GABAergic 
projections amplified CA3 to CA1 pyramidal cell input76. 
long- term potentiation (LTP) at this synapse is crucial for 
learning85. Interestingly, pharmacogenetic inhibition of 
GABAergic projections from the LEC to the hippocam-
pus during learning increased freezing and overgeneral-
ization in a contextual (but not cued) fear- conditioning 
task and impaired novel object recognition. This sug-
gests that LEC–hippocampal projections support the 
specificity or accuracy of memories for objects and 
contexts76. Further classification of GABAergic LEC–
hippocampal projections might help to dissect distinct 
projections that support either contextual or object 
memories. In addition, it remains to be established 
whether and to what extent GABAergic projections from 

the MEC to the hippocampus modulate the formation of 
hippocampus- dependent memories.

Hippocampal outputs
It has been long known that hippocampal GABAergic 
projection neurons have diverse molecular identities, 
morphologies and firing activities41,86. By and large, 
CA1 stratum oriens neurons projecting to the subic-
ulum, other cortices and the MS increase their firing 
during SWRs, whereas stratum radiatum neurons 
projecting to subiculum, presubiculum, retrosplenial 
cortex and indusium griseum fire strongly during 
theta oscillations and do not increase their firing rate 
during SWRs41 (fig. 3). A recent study by Katona et al.46, 
comprising six projection neurons in stratum oriens 
of CA1 in non- anaesthetized rats, confirmed that all  
these neurons exhibited increased activity during SWRs 
(fig. 3). The neurons were strongly phase- coupled to the 
descending phase (226–305 degrees) or trough (0.6–2.7 
degrees) of type I theta (locomotion- associated theta)46. 
However, the study also revealed that the neurons were 
highly diverse with respect to state- dependent fir-
ing rates and oscillatory phase coupling. The mean firing 
rates of the six projection neurons ranged from 4.1 to 
25.3 Hz during movement and 19.1 to 144.8 Hz during 
SWRs. In addition, neurons fired at different gamma fre-
quencies and had different burst firing probabilities. In 
general, burstiness was more prevalent during slow- wave 
sleep than during movement, and two out of seven cells 
increased in burst probability from <1% to >88% dur-
ing SWRs. In summary, projection neurons in this study 
exhibited multiple activity patterns during wakefulness 
and sleep, locomotion and rest, theta oscillations and 
SWRs. Each projection neuron had a unique combina-
tion of properties that did not match the main profiles of 
locally recorded (putatively non- projecting) GABAergic 
neurons. Most projection neurons were characterized by 
increased SWR- associated firing rates and coupling to 
the descending phase of theta. Notably, when consid-
ering local interneurons, these two properties typically 
did not co- occur in the same cell, but were reported for 
bistratified cells and PV+ cells, respectively46, suggesting 
that GABAergic projection neurons are physiologically 
distinct from local neurons.

Adding to this diversity, a recent study by Francavilla  
et al. demonstrated the existence of subiculum- projecting 
stratum oriens neurons whose activity did not increase 
during SWRs87, thus contrasting to most neurons 
described by Katona et al.46. The neurons found by 
Francavilla et al.87 increased their activity during immo-
bility (independent of SWR activity) and decreased 
their activity during locomotion and theta oscillations. 
This cell type was marked by the expression of VIP 
and, depending on the mouse line, also of the mus-
carinic M2 receptor (M2R); two other VIP+ cell types 
with local axon arbors lacked M2R. This study was per-
formed based on two- photon imaging of GCaMP fluo-
rescence after cortex aspiration in head- fixed VIP- Cre 
mice. It thus remains to be clarified to what extent the 
differences in activity in the studies by Katona et al.46 
and Francavilla et al.87 can be attributed to species and 
methodological differences.

Long-term potentiation
(lTP). long- term potentiation is 
a form of plasticity reflecting 
long- lasting increases in 
synaptic strength.
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The first functional inactivation study of hippocam-
pal projection neurons involved DREADD- mediated 
inactivation of GABAergic projections from the CA1 
to the retrosplenial cortex. Inactivation of these neu-
rons increased the duration of freezing in a contextual 
fear- conditioning task88. Further characterization of 
these cells revealed molecular features of neuroglia-
form cells. Interestingly, however, the dendritic and 
local axonal arbors were markedly different from those 
described for neurogliaform interneurons.

To conclude, similar to septal and entorhinal 
GABAergic projection neurons, hippocampal projection 
neurons comprise functionally diverse subclasses that 
await further differentiation based on molecular, mor-
phological and physiological criteria to understand the 
full repertoire of these neurons in fine- tuning cognition 
and behaviour. It is remarkable that, in the hippocam-
pus, electrophysiological recordings from as few as six 
neurons revealed such large diversity46 and even more 
diversification is to be expected when more cells and 
additional criteria are considered. It appears to be a com-
mon theme that projection neurons in the hippocam-
pus are molecularly, morphologically and functionally 
distinct from GABAergic interneurons. More detailed 
studies are needed to reveal whether this also pertains 
to neocortical and subcortical GABAergic projection 
neurons.

Neocortical outputs
Oscillations in distinct frequency bands in the neocor-
tex have been implicated in perception, motor control 
and cognitive behaviours89–97. SOM+ and PV+ cortical 
interneurons were demonstrated to be crucial in the 
generation and/or maintenance of synchronous and 
rhythmic neuronal activity98–100. However, it is not clear 
whether GABAergic projection neurons support local 
and/or distant oscillatory activity and synchronization.

Two studies revealed putative behavioural functions 
of cortico- striatal GABAergic projections. The first 
study27 demonstrated that optogenetic stimulation of 
projections from the medial prefrontal cortex to the 
nucleus accumbens induced avoidance behaviour in 
a real- time place preference task but had no effect on 
locomotion, anxiety- like behaviour, and social or novel 
object exploration. Since this pathway comprises at least 
two types of cells, namely PV+ and VIP+ neurons, it will 
be important to dissect the contribution of each cell type 
to the observed behavioural effect.

In a recent study, we compared PV+ and SOM+ pro-
jections from the primary and secondary motor cor-
tex to the striatum and found region- specific and cell 
type- specific connectivity as well as differential effects 
on spontaneous locomotion upon optogenetic stimu-
lation of axon fibre terminals26. Thus, this study sub-
stantiated the requirement for further differentiation of 
GABAergic long- range projections in future functional 
studies.

Common functions
In summary, GABAergic neurons connecting the MS, 
the hippocampus and parahippocampal areas consti-
tute a neuronal network that comprises heterogeneous 

cell populations. As discussed above, strong evidence 
exists that the MS synchronizes the hippocampus and 
parahippocampal areas through precise theta- coupled 
firing. In turn, inhibition from the MEC to the hip-
pocampus and from the hippocampus to the MEC 
and other parahippocampal areas probably supports 
synchronization, thereby enabling temporally precise 
information exchange to support coordinated process-
ing of neuronal activity and spatial memory formation. 
We predict that further research will reveal additional 
cortical GABAergic projection neurons in these areas 
and will hopefully provide evidence as to their causal 
role in the initiation or maintenance of oscillations and 
in fine- tuning cognition and behaviour.

We expect that state- dependent and sensory 
input- specific neuronal codes will become apparent 
for distinct GABAergic projection neurons once the 
precise timing of action potential firing of individual 
projection neurons can be assessed in awake behaving 
animals engaged in specific tasks. Thus, it is probable 
that a neuron undergoes task- dependent shifts in fir-
ing frequency, rhythmicity and theta phase coupling, 
resulting in task- dependent synchronization of distant 
brain areas and thus in an increased signal transmission 
efficiency during precise time windows.

In our view, one of the most interesting questions is 
whether GABAergic projection neurons simultaneously 
control local and remote brain areas. For instance, the 
morphological characterization of hippocampal nNOS+ 
GABAergic projection neurons101 led the authors to 
conclude that the axons of these neurons arborize both 
locally within the CA1 region and in several distant 
brain areas, including the tenia tecta, diagonal band, 
MS, subiculum, entorhinal cortex, mammillary nuclei, 
lateral hypothalamus, olfactory tubercle, olfactory bulb, 
ipsilateral dentate gyrus and contralateral hippocampus. 
Locally, these GABAergic projection neurons target both 
pyramidal neurons and interneurons. The identity of 
the target cells in the remote brain areas has remained 
unknown.

Interestingly, the limited number of studies con-
sidered in this Review already allows us to conclude 
that local and distant connectivity rules for a given 
GABAergic projection neuron may diverge. For instance, 
a particular class of GABAergic projection neurons, 
namely VIP+ neurons in the CA1, targets interneurons 
locally but interneurons and pyramidal cells distantly 
(that is, in the subiculum)87. When considering only 
remote targeting, the following scenarios have emerged: 
in the remote target area, GABAergic projection neurons 
inhibit inhibitory neurons (for example, GABAergic 
projections from the MEC to the CA1 (ref.5), the LEC  
to the CA1 (ref.76), the MS to the CA3 (ref.31), the MS to  
the MEC17, the nucleus incertus to the CA1 (ref.102), and 
the globus pallidus to the cortex103), excitatory neurons 
(for example, GABAergic projections from the auditory 
cortex to the lateral amygdala104), or excitatory and inhib-
itory neurons (for example, GABAergic projections from 
the hippocampus to the MEC5 and the hypothalamus 
to the CA1 (ref.105)); more examples of remote targeting 
specificity are provided in Supplementary Tables 1, 2 
and fig. 4. When considering the different scenarios, 
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one pressing question arises, namely how effective is 
the recruitment of defined GABAergic projections in 
directing information flow between the different brain 
areas? For instance, Basu et al. demonstrated that axonal 
activation of LEC GABAergic projection neurons inhib-
ited inhibitory neurons in the target area, thereby disin-
hibiting pyramidal cells and supporting the enhanced 
neurotransmission of LEC–hippocampal informa-
tion flow within a defined time window following the 
recruitment of GABAergic long- range projections76. 
We suspect that the efficacy of GABAergic projection 
neurons in directing information flow depends largely 
on the network state of the source and target area, the 
connectivity pattern of the GABAergic projection neu-
ron in the target area and the synaptic properties (for 
example, synaptic strength and the localization of the 
synapses along the somato–dendritic axis). For instance, 
axons derived from GABAergic projection neurons in 
the LEC cover a much larger territory in the CA1 than 
those from GABAergic projection neurons in the MEC. 
In addition, current amplitudes in the postsynaptic 
interneurons in the CA1 target area are four times larger 
upon axonal activation of LEC GABAergic projection 
neurons than of MEC GABAergic projection neurons76. 
Such pathway- specific functional characterization and 
the computations that the individual properties support 
remain to be elucidated for an ever- increasing number 
of novel GABAergic projection neurons.

Role in development and neurogenesis
During development, GABAergic interneurons modu-
late a number of processes, including cell proliferation, 
migration, synaptic wiring, synchronization of neuronal 
networks and plasticity, by which they govern the mat-
uration of the cortex106,107. This, of course, prompts the 
question of whether GABAergic projection neurons 
support, in part or even entirely, any of these processes. 
Only a few studies have considered GABAergic projec-
tion neurons in the context of development. This is not 
surprising, given the lack of specific markers that help 
distinguish GABAergic interneurons and projection 
neurons.

Picardo et al. identified early- generated (that is, born 
before embryonic day 10.5 (E10.5)) GABAergic cells in 
the hippocampus with extensive axonal arborisation 
at postnatal day 7 (P7) that develop into long- range 
neurons108. These ‘hub cells’, as termed in an earlier 
study39, can efficiently alter the hippocampal synchro-
nized activity, which has been hypothesized to contrib-
ute to synaptic strengthening and structural refinement 
within the hippocampus109,110.

Although the study by Picardo et al.108 indicated that 
the peak of hub cell generation occurs well before that of 
GABAergic interneuron generation, this does not appear 
to hold true for long- range GABAergic projection neu-
rons in general101. Indeed, Wick et al. described a class 
of hippocampal GABAergic projection neurons that are 
nNOS+ and that are born between E10.5 and E11.5; that 
is, at a time that coincides with the peak of interneuron 
generation101.

Two studies have described a GABAergic projec-
tion from the zona incerta to L1 of the somatosensory 

cortex111,112. This projection is densest during cortical 
development and becomes weaker after the second 
postnatal week, suggesting that it has a developmental 
function. Indeed, the ablation of synaptic vesicle release 
from zona incerta neurons during the first postnatal 
week decreased the number of spines and L5 pyrami-
dal dendrite branches as well as the postsynaptic input 
frequency, suggesting that these projections promote 
neuronal development113. Consistent with earlier stud-
ies in the hippocampus114,115, GABA released from these 
zona incerta neurons had depolarizing effects onto cor-
tical pyramidal cells before P21 (refS113,116). Intriguingly, 
GABAergic long- range input was also found in cortical 
L1 in human embryos at gestational week 24 (ref.113), but 
the source of the axonal plexus and whether it exerts a 
possible developmental function is not known.

GABAergic projection neurons have also been 
found in the subplate–L6b of neonatal mice117. At P2, 
these neurons constitute only 4–8.4% of all projection 
neurons with axons in the corpus callosum (presuma-
bly targeting the contralateral cortex), internal capsule 
(presumably targeting subcortical areas) and to other 
cortical areas. Interestingly, the GABAergic compo-
nent of long- range projecting neurons decreases with 
development (measured at P7) when considering the 
subcortical and ipsilateral cortical projections but 
increases when considering the contralateral cortical 
projections. It is not clear whether these changes can 
be accounted for by the changes in the number of glu-
tamatergic or GABAergic projections. The functional 
impact of these GABAergic projections on neuronal 
and circuit development has remained enigmatic so far. 
However, the relative decrease of ipsilateral cortical and 
subcortical projections during the first week of life sug-
gests that these projections play a role in early postnatal 
development of the brain.

GABAergic neurotransmission in the olfactory 
bulb and DG is important for the integration of newly 
born neurons into the local circuitry in adult mice118,119. 
GABAergic signalling promotes neuronal differentiation 
in adult hippocampal progenitor cells120. Bao et al. provide 
evidence that GABA release from septo–hippocampal 
projections regulates adult neurogenesis in the DG14. 
Thus, PV+ and PV− SOM− MS GABAergic neurons 
induce tonic depolarization of PV+ cells in the DG via 
extrasynaptic GABA14. Bao et al. suggest that these inputs 
are necessary to maintain neuronal stem cell quiescence 
and to suppress the proliferation of progenitors, acti-
vated astrocytes, immature neurons and branches of 
newly born neurons in the DG14.

Interestingly, the shift from depolarizing GABA to 
hyperpolarizing GABA during late development seems 
to go along with a functional shift from promoting neu-
ronal connectivity to dampening evoked epileptiform 
activity. Indeed, activation of the incertocortical113 and 
septo–hippocampal GABAergic projections19 in adult 
mice inhibited epileptiform activity.

GABA and co- transmitters
The release of GABA and other neurotransmitters from 
the same neuron at certain terminals was postulated in 
1976 (ref.121). Several studies and reviews have reported 

Progenitor cells
Descendants from stem cells 
that have the ability to divide 
and differentiate but with a 
more limited differentiation 
potential than stem cells.

Stem cell quiescence
The state of a stem cell in 
which it does not divide but 
can be re- activated by external 
cues.

Nature reviewS | NeuROSCieNCe

R e v i e w s

  volume 21 | September 2020 | 509



the co- transmission (release from different vesicles) 
and co- release (release from the same vesicles) of sev-
eral neurotransmitters121,122. However, co- transmission 
and/or co- release from corticofugal and corticopetal 
GABAergic projections has rarely been addressed, 
although many GABAergic projection neurons 
co- express acetylcholine (ACh) and neuropeptides like 
SOM and VIP along with GABAergic markers (Table 3).

Expression of multiple co- transmitters in GABAergic 
neurons. Recent single- cell RNA sequencing studies 
revealed the specific expression of several neuropep-
tides and secreted signalling proteins in a subclass of 
cortical GABAergic projection neurons44. Indeed, most 
long- distance (1.5 mm) cortico- cortical GABAergic 
neurons co- express SOM, nNOS, and neuropeptide Y 
and most nNOS- expressing neurons are cortico- cortical 

Table 3 | GABAergic projections co- expressing neurotransmitters and/or secreted proteins

Source area Target area Putatively 
co- transmitted 
neuropeptide

Putatively 
co- transmitted 
neurotransmitter 
and/or secreted 
protein

Refs

Hippocampal projections

DG DG SOM, NPY – 146–148

DG Hippocampus SOM – 149

Hippocampus Subiculum Enkephalin – 41

Hippocampus MEC SOM – 5

Hippocampus Retrohippocampus, septum SOM, NPY – 41

Hippocampus Septum Partly NPY, 
90–100% SOM

59% NGF 150–153

Hippocampus, subiculum Lateral septum, stria terminalis, 
anteroventral thalamic area

CCK – 154

Ventral hippocampus Amygdala NPY, CCK, SOM – 155

Hippocampus Tenia tecta, diagonal band, medial 
septum, subiculum, entorhinal 
cortex, mammillary nuclei, lateral 
hypothalamus, olfactory tubercle, 
olfactory bulb, ipsilateral DG and 
contralateral hippocampus

– nNOSa 101

Other cortical projections

Cortex Cortex 91% SOM; 82% 
NPY

71% nNOSa 123,156,157

Infralimbic cortex Prelimbic cortex NPY – 30

Piriform cortex, perirhinal 
cortex, entorhinal cortex, 
endopiriform nucleus, lateral 
amygdala, locus coeruleus

Entorhinal cortex NPY – 158

Auditory cortex, motor cortex Striatum SOM – 25,26

Medial prefrontal cortex Nucleus accumbens VIP – 27

Auditory cortex Lateral amygdala SOM – 104

Medial septal projections

Medial septum Hippocampus – ACh 19

Medial septum MEC and LEC – ACh 18

Subcortical projections to cortex

GPe Cortex – ACh 103

Basal forebrain Cortex SOM – 139

Basal forebrain Cortex layer 1 – ACh 124

Supra- mammillary body Dorsal hippocampus, entorhinal 
cortex

CCK, VIP Glutamate 105,159,160

Tuberomammillary nucleus Cortex Galanin Histamine 13,126

Nucleus incertus Hippocampus, neocortex Relaxin 3 – 102,128,129

Dorsal raphe Medial prefrontal cortex – Serotonin 145

A dash indicates either not studied or not detected. ACh, acetylcholine; CCK, cholecystokinin; DG, dentate gyrus; GPe, external 
globus pallidus; LEC, lateral entorhinal cortex; MEC, medial entorhinal cortex; NGF, nerve growth factor; nNOS, neuronal nitric oxide 
synthase; NPY, neuropeptide Y; SOM, somatostatin; VIP, vasoactive intestinal peptide. anNOS is a bona fide marker for NO release.
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projection neurons123. One study found that this 
cell- type co- expresses pleiotrophin, WNT family 
member 2, relaxin 1, neuropeptide Y, cortistatin and 
proenkephalin44, raising the question as to whether these 
proteins and peptides are released in distant target areas. 
Cortical PV+ cells also express tachykinin precursor 1, 
adrenomedullin and R- spondin 2 precursor44. Cortical 
SOM+ calretinin- expressing cells express naturally pro-
cessed peptides44. It is possible that a subpopulation of 
these PV+ and SOM+ neurons project to the striatum 
and other brain areas24,25,61,104. Only a few studies have 
started to dissect the effects of co- transmitters, which 
we highlight below.

Cholinergic co- transmission. A subpopulation of 
basalo- cortical and septal GABAergic projection neu-
rons co- express ACh. Notably, a study reported that a 
large fraction of ChAT+ MS–diagonal band of Broca 
neurons (>80%) expressed VGAT and GAD65 (but 
not GAD67) and 31% of L1 interneurons responded 
to brain- wide ChAT+ terminal stimulation with 
GABAergic responses124. Neurons in other layers were 
not investigated in this study. Furthermore, more than 
80% of VGAT+ terminals from cortically projecting glo-
bus pallidus neurons co- expressed the vesicular ACh 
transporter (VAChT) and 58% of VAChT+ terminals also 
expressed VGAT103. Cortical GABAergic neurons in L1, 
L2, L3 and L6 were the exclusive targets for fast trans-
mission from ChAT+ globus pallidus projection neurons. 
Interestingly, most responding interneurons (>70%) 
exhibited either nicotinic or GABAergic responses, with 
nicotinic responses confined to L1 and L6 interneurons. 
The functional results paralleled the observed packaging 
of ACh and GABA into separate vesicles103.

Takács et al. suggested that all cholinergic septo– 
hippocampal neurons co- transmit GABA19. Similar to 
the basalo- cortical projection, ACh and GABA were 
packaged into different vesicles. Interestingly, the release  
of the two transmitters was differentially regulated 
by different voltage- dependent calcium channels and 
short- term plasticity (GABAergic but not cholinergic 
responses underwent short- term plasticity following 
optogenetic stimulation of septo–hippocampal projec-
tions with five light pulses at 2–20 Hz). Importantly, the 
effects that were previously attributed to ACh release 
from these fibres could now be attributed to GABA 
release. Thus, epileptiform activity and SWRs were 
dampened by GABA release from cholinergic septo–
hippocampal neurons alone19. Adding to the complex-
ity, ACh can act on muscarinic and nicotinic receptors 
and the contribution of these receptors to LTP and 
long- term depression in CA1 pyramidal cells depends 
on the exact timing of cholinergic fibre stimulation 
relative to the stimulation of Schaffer collateral input 
to CA1 pyramidal cells125. Thus, LTP and long- term 
depression might be regulated by a complex interplay 
of GABA and ACh that derive from the same neuronal 
population.

A similar scenario was reported for septal projections 
to the MEC and LEC; 89% of cholinergic projection 
neurons co- expressed mRNA for GAD65 (ref.18). Most 
excitatory responding cells in superficial layers of the 

MEC and LEC exhibited only muscarinic cholinergic 
responses. By contrast, around half of the responding 
interneurons in the MEC exhibited muscarinic and/or  
nicotinic cholinergic and GABAergic responses, with 
the rest showing either GABAergic or cholinergic res-
ponses18. It will be a challenge to understand how this 
complex interplay of GABA and ACh modulates theta 
oscillations and memory formation.

Together, these studies also prompt the question 
of whether released co- transmitters can act presynap-
tically to differentially regulate the release of different 
co- transmitters. However, this does not seem to be the 
case for GABA and ACh release from septo–hippocam-
pal projections. In these projections, GABA and ACh 
act on presynaptic GABAB and muscarinic receptors, 
respectively, and both suppress the release of GABA 
and ACh19.

Histamine co- transmission. The only source of hista-
mine in the brain is the tuberomammillary nucleus. 
Most histaminergic projections from the tuberomam-
millary nucleus to the cortex express GABA, histamine 
and galanin126. Although nothing is known about galanin 
release from these projections in the cortex, one study has 
examined GABA–histamine co- transmission. Yu et al. 
found that optogenetic 5 Hz stimulation of histaminer-
gic tuberomammillary–cortical fibres for 3 mins induced 
direct inhibitory GABAergic tonic currents in pyrami-
dal cells as well as histamine release- mediated excitation 
of inhibitory neurons via histamine receptors 1 and 2, 
which in turn led to an increase in inhibitory postsynap-
tic input frequency in pyramidal neurons13. Consistent 
with this divergence in the effects and target cells of his-
tamine and GABA, Kukko- Lukjanov and Panula127 found 
that histamine and GABA are stored in different vesicles. 
Functionally, histamine and GABA seem to have oppos-
ing effects: histaminergic cell activation is behaviourally 
stimulating (increasing wakefulness and locomotion), 
whereas GABA release from histaminergic projections 
seems to counteract this effect13.

Relaxin 3 co- transmission. An interesting projection to 
the cortex, hippocampus and several other brain areas 
derives from the nucleus incertus and contains relaxin 3 
and GABA128,129. The presence of relaxin 3 in terminals 
reaching the cortex and hippocampus and the expression 
of relaxin 3 receptors in these areas129 have been viewed 
as evidence for relaxin 3 release. Haidar et al.130 suggested 
that relaxin 3 release from GABAergic nucleus incertus 
terminals in the hippocampus enhances reference and 
working memory; this conclusion was based on results 
from relaxin 3 receptor knockout mice. However, it was 
not shown whether relaxin 3 was released specifically 
during the memory task or whether task- independent 
homeostatic release of relaxin 3 is necessary for normal 
hippocampal function. Notably, a recent study provided 
evidence for GABA release from relaxin 3- expressing 
nucleus incertus terminals, which acted preferentially on 
SOM+ neurons in hippocampal slices102. In vivo manip-
ulation indicated that these projections were involved in 
the formation of associative fear memories102. However, 
this elegant study did not provide evidence for the 

Long- term depression
long- term depression is a  
form of plasticity reflecting 
long- lasting decreases in 
synaptic strength.

Schaffer collateral
an excitatory pathway from 
the Ca3 area to the Ca1 area 
of the hippocampus that 
undergoes plasticity and is 
thought to underlie certain 
forms of memory formation  
in the hippocampus.
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relative contributions of relaxin 3 release versus GABA 
release in vivo.

SOM co- transmission. SOM is one of the most prevalent 
markers of cortical and hippocampal GABAergic pro-
jection neurons5,24–26,104. Nevertheless, so far, the func-
tion of SOM co- transmission in distant target areas has 
not been addressed. Interestingly, neuropeptide release 
has been suggested to be facilitated by burst firing131. 
Notably, the majority of SOM+ GABAergic CA1 stra-
tum oriens projection neurons exhibited increased 
burst firing during SWRs46. SWRs have been postulated 
to support memory consolidation and retrieval132. Thus, 
it stands to reason to investigate whether SOM release is 
enhanced during SWR events and whether it regulates 
memory consolidation. The effects of SOM on cell firing, 
epileptic activity, and learning and memory have been 
reviewed elsewhere133.

Conclusion. In summary, most of the above cited studies 
indicate that co- transmitters at GABAergic long- range 
terminals are sorted to different vesicles19,103,127. This adds 
to the complexity regarding the function of GABAergic 
long- range projections as it allows for the differential regu-
lation of acute and long- term neurotransmitter release  
and the targeting of segregated postsynaptic neuronal 
populations, not only through differential postsynaptic 
receptor expression but also through the presynaptic dif-
ferential segregation and regulation of vesicles. A major 
challenge will be to differentiate the functional effects 
resulting from GABA itself and those induced by other 
co- transmitted or co- released neurotransmitters and 
neuromodulators. Increasing numbers of Cre- dependent 
knockout mice as well as the use of CRISPR/Cas9- 
mediated knockout or siRNA- mediated knockdown 
combined with local infusion of specific antagonists 
will facilitate the teasing apart of opposing, additive or 
complex actions and interactions of co- transmitters. 
Understanding these differential effects will be of high 
relevance to better understand the aetiology of neuro-
psychiatric disorders. For instance, specific downregula-
tion of GABA at GABA/glutamate co- releasing synapses 
in the habenula has been found in an animal model of 
depression and has been suggested to underlie some  
of the phenotypic changes in this mouse model134.

Future questions and challenges
The sparsity of GABAergic long- range neurons in corti-
cal brain areas places high demands on the specificity and 
efficiency of research tools. Although several old tracing 
techniques, including retrobeads, fluorogold and cholera 
toxin subunit B, are still considered efficient and reliable 
tracers, new viral expression systems can be exploited to 
inhibit or activate neurons to thereby gain insights into 
the function of selected subpopulations.

The diversity of the thus far identified subclasses of 
GABAergic long- range projections hints at how impor-
tant it will be to reveal functions in a subtype- specific 
manner. Joshi et al.22 and Unal et al.31 convincingly 
showed that a classification based only on the chemi-
cal markers known thus far is not sufficient to explain 
functional diversity. Single- cell RNA sequencing of 

retrogradely labelled GABAergic neurons might help to 
identify better markers.

Investigating the endogenous activity of subtypes of 
projection neurons during different behavioural states 
will be required to better understand the effects of opto-
genetic manipulations. The cellular as well as the net-
work effects of optogenetic stimulation may depend on 
the physiological state of the cells. For instance, Mamad 
et al. demonstrated that optogenetic stimulation of 
ChAT+ cells in the MS differentially affected the num-
ber of evoked spikes depending on whether the stimula-
tion occurred during a low- firing or a fast- firing state135. 
Furthermore, optogenetically inhibiting the baseline 
firing rate of neurons and hence altering their contribu-
tion to the excitatory–inhibitory balance in the network 
might have a strong effect even if these neurons do not 
exhibit task- specific firing activity (for example, see the 
discussion by Otchy et al.136). The identification of mark-
ers or the exploitation of new retrograde tracing tools, 
such as aaV2- retro137, to selectively visualize or record 
the activity from those few GABAergic neurons that are 
long- range projecting will be essential to understand 
their function.

A major challenge will be to disambiguate the impact 
of precise oscillatory activity from that of general syn-
aptic drive or inhibition in the context of behavioural 
performance. For example, it has been shown that 
electrical stimulation of combined GABAergic and 
non- GABAergic septo–hippocampal projections at a 
precise fixed frequency, but not irregular stimulation 
with the same average frequency, promotes spatial learn-
ing in rats64. Considering the strong rhythmicity and 
phase coupling of most identified septo–hippocampal 
GABAergic cells, it is conceivable that the exact timing 
of their firing is a major determinant of their behavioural 
impact.

It can be assumed that the total population of 
GABAergic projection neurons is larger than the low 
numbers that were found in most retrograde tracing 
studies. Several studies suggested that segregated sub-
populations of GABAergic cortical and hippocampal 
neurons project to different target areas16,24. So far, four 
reports indicate the presence of GABAergic neurons that 
project to more than one target area17,21,31,41. For example, 
Fuchs et al. found single neurons that projected to the 
MEC and hippocampus when employing fluorogold17. 
Unal et al. did not find dual targeting of MS neurons 
in a study using retrobeads16. Whether the uptake and 
transport efficiency of the tracers only or whether other 
factors, such as injection volume, injection site and sig-
nal to noise ratio, may also account for the differential 
results in the two studies is not clear; however, it is clear 
that conventional retrograde tracers are suitable for 
qualitative but not quantitative evaluations.

Sun et al. used a technique that circumvented some 
of these problems, enabling them to perform a quantita-
tive analysis: using rabies tracing, they calculated a con-
nection strength index from the number of presynaptic 
retrogradely labelled neurons normalized to the num-
ber of starter cells138. Similarly, Do et al. normalized the 
number of rabies- mediated, retrogradely labelled cells in 
each brain area to the total number of labelled neurons 

AAV2- retro
a designed variant of 
recombinant adeno- associated 
viruses that allows the virus to 
be efficiently retrogradely 
transported from the axon 
terminal to the neuronal cell 
body.
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in the whole brain, which allowed them to calculate the 
relative numbers of the connection strength distribution 
in the whole brain139.

Conclusions
Research during the past decade has revealed that cor-
tical GABAergic projection neurons do not constitute 
a rare cell population. Similar to GABAergic interneu-
rons, they populate many brain areas connecting 
cortico- cortical and cortico- subcortical brain regions 
and they come in different types that can be distin-
guished based on molecular marker expression and 
connectivity. It is only the advent of virus- mediated 
tracing and optogenetics that rendered functional elec-
trophysiological and behavioural studies of GABAergic 
projection neurons possible. A direct comparison with 
GABAergic interneurons reveals the glaring lack of  
knowledge regarding the properties and functions  
of GABAergic projection neurons. The most pressing 
questions include the following: what are the genetic 
programmes that determine whether a GABA neuron 
becomes an interneuron or a projection neuron? How 
do connectivity rules for defined GABAergic projection 
neurons compare to those for GABAergic interneurons? 

(This question pertains to both cell type, cell compart-
ment of the targeted neuron and release probability of 
the GABAergic projection neuron.) To what extent can 
GABAergic projection neurons be classified into defined 
subtypes? Do criteria that have been considered for the 
classification of GABAergic interneurons140 hold true for  
GABAergic projection neurons? Investigations at the 
cellular level that aim to answer these questions will be 
paramount to understand the functions of GABAergic 
projection neurons. The scarce literature regarding 
GABAergic projection neurons does not only reflect a 
lack of knowledge in this field but also points to the great 
potential that research of this terra incognita offers.

Considering the diversity of GABAergic projection 
neurons that has been revealed so far, it will be of utmost 
importance to find tools that allow researchers to specif-
ically target and manipulate the subclasses of GABAergic 
projection neurons based on their molecular identity, 
postsynaptic targeting specificity, and in vivo firing pat-
terns and that, at the same time, allow the differentiation 
between long- range effects and those that are exerted 
through local branches.
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